Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 504
Filtrar
1.
J Food Sci ; 89(1): 710-726, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38146794

RESUMO

The beneficial role of carnosine during in vitro digestion of meat was previously demonstrated, and it was hypothesized that such benefits could also be obtained in a meal system. The current study, therefore, assessed carnosine effects on markers of lipid and protein oxidation and of advanced glycation end products (AGEs) during gastric and duodenal in vitro digestion of a burger meal model. The model included intrinsic (low) and enhanced (medium and high) carnosine levels in a mix of pork mince and bread, with or without ascorbic acid (AA) and/or fructose as anti- and prooxidants, respectively. In the presence of either AA or fructose, a carnosine prooxidative potential during digestion was observed at the medium carnosine level depending on markers and digestive phases. However, free carnosine found at the high carnosine level exerted a protective effect reducing the formation of 4-hydroxynonenal in the gastric phase and glyoxal in both the gastric and duodenal phases. Dual effects of carnosine are likely concentration related, whereby at the medium level, free radical production increases through carnosine's ferric-reducing capacity, but there is insufficient quantity to reduce the resulting oxidation, while at the higher carnosine level some decreases in oxidation are observed. In order to obtain carnosine benefits during meal digestion, these findings demonstrate that consideration must be given to the amount and nature of other anti- and prooxidants present and any potential interactions. PRACTICAL APPLICATION: Carnosine, a natural compound in meat, is a multifunctional and beneficial molecule for health. However, both pro- and antioxidative effects of carnosine were observed during digestion of a model burger meal when ascorbic acid was included at a supplemental level. Therefore, to obtain benefits of dietary carnosine during digestion of a meal, consideration needs to be given to the amount and nature of all anti- and prooxidants present and any potential interactions.


Assuntos
Carnosina , Carnosina/metabolismo , Carnosina/farmacologia , Ácido Ascórbico , Antioxidantes/farmacologia , Digestão , Frutose
2.
Drug Discov Today ; 29(2): 103860, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38128717

RESUMO

Carnosine, an endogenous dipeptide, has been found to have a plethora of medicinal properties, such as antioxidant, antiageing, and chelating effects, but with one downside: a short half-life. Carnosinases and two hydrolytic enzymes, which remain enigmatic, are responsible for these features. Hence, here we emphasize why research is valuable for better understanding crucial concepts like ageing, neurodegradation, and cancerogenesis, given that inhibition of carnosinases might significantly prolong carnosine bioavailability and allow its further use in medicine. Herein, we explore the literature regarding carnosinases and present a short in silico analysis aimed at elucidating the possible recognition pattern between CN1 and its ligands.


Assuntos
Carnosina , Dipeptidases , Humanos , Carnosina/química , Carnosina/metabolismo , Antioxidantes , Dipeptidases/química , Dipeptidases/metabolismo , Envelhecimento
3.
Nan Fang Yi Ke Da Xue Xue Bao ; 43(11): 1965-1970, 2023 Nov 20.
Artigo em Chinês | MEDLINE | ID: mdl-38081616

RESUMO

OBJECTIVE: To explore the mechanisms mediating the protective effect of carnosine against nephropathy in rats with diabetes mellitus (DM). METHODS: Rat models of DM established by high-fat diet feeding and streptozotocin injection were randomized into DM group and 3 treatment groups with daily carnosine treatment at 100, 300, and 900 mg/kg. Body weight and blood glucose level changes of the rats were measured regularly. After the treatment, 24-h urine, serum samples and kidneys of the rats were collected to measure urine volume, urine protein content, blood creatinine, and kidney mass; renal pathology was observed using HE staining, and MDA content and SOD activity in the kidney tissues were detected. Western blotting was performed to detect the protein expressions of p-AKT, AKT, p-mTOR, mTOR, LC3 and p62 in the kidney tissues. RESULTS: Compared with normal control rats, the diabetic rats exhibited dull and wet hair and showed decreased body weight, increased blood glucose, urinary protein content, 24-h urine volume, blood creatinine, and kidney mass with obvious swelling and deformation of the glomeruli, narrowing of the renal tubules, decreased SOD activity and increased MDA content, lowered p-mTOR/mTOR and p-AKT/AKT ratios and increased LC3 Ⅱ/Ⅰ ratio and p62 protein expression in the kidney tissue. The diabetic rats receiving carnosine treatments had dry hair with normal luster and showed increased body weight and slightly decreased blood glucose, urinary protein content, 24-h urine volume, blood creatinine, and kidney mass. The treatment also improved renal pathology, increased SOD activity, decreased MDA content, increased p-mTOR/mTOR and p-AKT/AKT ratios and lowered LC3 Ⅱ/Ⅰ ratio and p62 protein expression in renal tissue of the diabetic rats. CONCLUSION: Carnosine offers protection against nephropathy in rats with DM possibly by inhibiting oxidative stress, activating the AKT/mTOR pathway, and restoring autophagy in the kidneys.


Assuntos
Carnosina , Diabetes Mellitus Experimental , Nefropatias Diabéticas , Ratos , Animais , Nefropatias Diabéticas/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , Carnosina/farmacologia , Carnosina/metabolismo , Diabetes Mellitus Experimental/metabolismo , Glicemia/metabolismo , Creatinina , Ratos Sprague-Dawley , Rim , Serina-Treonina Quinases TOR/metabolismo , Peso Corporal , Superóxido Dismutase/metabolismo , Autofagia
4.
Physiol Rep ; 11(19): e15833, 2023 10.
Artigo em Inglês | MEDLINE | ID: mdl-37771070

RESUMO

We evaluated whether anserine, a methylated analog of the dipeptide carnosine, is present in the cardiac and skeletal muscles of humans and whether the CARNMT1 gene, which encodes the anserine synthesizing enzyme carnosine-N-methyltransferase, is expressed in human skeletal muscle. We found that anserine is present at low concentrations (low micromolar range) in both cardiac and skeletal muscles, and that anserine content in skeletal muscle is ~15 times higher than in cardiac muscle (cardiac muscle: 10.1 ± 13.4 µmol·kg-1 of dry muscle, n = 12; skeletal muscle: 158.1 ± 68.5 µmol·kg-1 of dry muscle, n = 11, p < 0.0001). Anserine content in the heart was highly variable between individuals, ranging from 1.4 to 45.4 µmol·kg-1 of dry muscle, but anserine content was not associated with sex, age, or body mass. We also showed that CARNMT1 gene is poorly expressed in skeletal muscle (n = 10). This is the first study to demonstrate that anserine is present in the ventricle of the human heart. The presence of anserine in human heart and the confirmation of its expression in human skeletal muscle open new avenues of investigation on the specific and differential physiological functions of histidine dipeptides in striated muscles.


Assuntos
Anserina , Carnosina , Humanos , Anserina/análise , Anserina/metabolismo , Carnosina/análise , Carnosina/metabolismo , Músculo Esquelético/metabolismo , Dipeptídeos/metabolismo , Miocárdio/metabolismo
5.
Biochemistry (Mosc) ; 88(8): 1181-1190, 2023 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-37758316

RESUMO

Using nutritional interventions to cure and manage psychiatric disorders is a promising tool. In this regard, accumulating documents support strong relationships between the diet and brain health throughout the lifespan. Evidence from animal and human studies demonstrated that ß-alanine (Beta-alanine; BA), a natural amino acid, provides several benefits in fight against cognitive decline promoting mental health. This review summarizes and reports state-of-the-art evidence on how BA affects cognitive health and argues existence of potential unrevealed biochemical mechanisms and signaling cascades. There is a growing body of evidence showing that BA supplement has a significant role in mental health mediating increase of the cell carnosine and brain-derived neurotrophic factor (BDNF) content. BDNF is one of the most studied neurotrophins in the mammalian brain, which activates several downstream functional cascades via the tropomyosin-related kinase receptor type B (TrkB). Activation of TrkB induces diverse processes, such as programmed cell death and neuronal viability, dendritic branching growth, dendritic spine formation and stabilization, synaptic development, cognitive-related processes, and synaptic plasticity. Carnosine exerts its main effect via its antioxidant properties. This critical antioxidant also scavenges hypochlorous acid (HOCl), another toxic species produced in mammalian cells. Carnosine regulates transcription of hundreds of genes related to antioxidant mechanisms by increasing expression of the nuclear erythroid 2-related factor 2 (Nrf2) and translocating Nrf2 to the nucleus. Another major protective effect of carnosine on the central nervous system (CNS) is related to its anti-glycating, anti-aggregate activities, anti-inflammatory, metal ion chelator activity, and regulation of pro-inflammatory cytokine secretion. These effects could be associated with the carnosine ability to form complexes with metal ions, particularly with zinc (Zn2+). Thus, it seems that BA via BDNF and carnosine mechanisms may improve brain health and cognitive function over the entire human lifespan.


Assuntos
Carnosina , Animais , Humanos , Carnosina/farmacologia , Carnosina/metabolismo , Antioxidantes , Fator Neurotrófico Derivado do Encéfalo/genética , Fator 2 Relacionado a NF-E2 , Cognição , beta-Alanina , Mamíferos/metabolismo
6.
Prog Neurobiol ; 231: 102532, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37774767

RESUMO

Multiple sclerosis (MS) pathology features autoimmune-driven neuroinflammation, demyelination, and failed remyelination. Carnosine is a histidine-containing dipeptide (HCD) with pluripotent homeostatic properties that is able to improve outcomes in an animal MS model (EAE) when supplied exogenously. To uncover if endogenous carnosine is involved in, and protects against, MS-related neuroinflammation, demyelination or remyelination failure, we here studied the HCD-synthesizing enzyme carnosine synthase (CARNS1) in human MS lesions and two preclinical mouse MS models (EAE, cuprizone). We demonstrate that due to its presence in oligodendrocytes, CARNS1 expression is diminished in demyelinated MS lesions and mouse models mimicking demyelination/inflammation, but returns upon remyelination. Carns1-KO mice that are devoid of endogenous HCDs display exaggerated neuroinflammation and clinical symptoms during EAE, which could be partially rescued by exogenous carnosine treatment. Worsening of the disease appears to be driven by a central, not peripheral immune-modulatory, mechanism possibly linked to impaired clearance of the reactive carbonyl acrolein in Carns1-KO mice. In contrast, CARNS1 is not required for normal oligodendrocyte precursor cell differentiation and (re)myelin to occur, and neither endogenous nor exogenous HCDs protect against cuprizone-induced demyelination. In conclusion, the loss of CARNS1 from demyelinated MS lesions can aggravate disease progression through weakening the endogenous protection against neuroinflammation.


Assuntos
Carnosina , Encefalomielite Autoimune Experimental , Esclerose Múltipla , Humanos , Camundongos , Animais , Esclerose Múltipla/tratamento farmacológico , Cuprizona/efeitos adversos , Cuprizona/metabolismo , Carnosina/efeitos adversos , Carnosina/metabolismo , Doenças Neuroinflamatórias , Bainha de Mielina/patologia , Oligodendroglia/patologia , Modelos Animais de Doenças , Encefalomielite Autoimune Experimental/induzido quimicamente , Encefalomielite Autoimune Experimental/metabolismo , Encefalomielite Autoimune Experimental/patologia
7.
Bioresour Technol ; 387: 129628, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37549716

RESUMO

L-Carnosine has various physiological functions and is widely used in cosmetics, medicine, food additives, and other fields. However, the yield of L-Carnosine obtained by biological methods is far from the level of industrial production. Herein, a cell factory for efficient synthesis of L-Carnosine was constructed based on transporter engineering and protein engineering. Firstly, a dipeptidase (SmpepD) was screened from Serratia marcescens through genome mining to construct a cell factory for synthesizing L-Carnosine. Subsequently, through rationally designed SmPepD, a double mutant T168S/G148D increased the L-Carnosine yield by 41.6% was obtained. Then, yeaS, a gene encoding the exporter of L-histidine, was deleted to further increase the production of L-Carnosine. Finally, L-Carnosine was produced by one-pot biotransformation in a 5 L bioreactor under optimized conditions with a yield of 133.2 mM. This study represented the highest yield of L-Carnosine synthesized in microorganisms and provided a biosynthetic pathway for the industrial production of L-Carnosine.


Assuntos
Carnosina , Carnosina/genética , Carnosina/metabolismo , Escherichia coli/genética , Escherichia coli/metabolismo , Reatores Biológicos , Proteínas de Membrana Transportadoras/genética , Proteínas de Membrana Transportadoras/metabolismo , Engenharia de Proteínas , Engenharia Metabólica/métodos
8.
High Alt Med Biol ; 24(4): 302-311, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37643283

RESUMO

Rathor, Richa, Sukanya Srivastava, and Geetha Suryakumar. A comparative biochemical study between L-carnosine and ß-alanine in amelioration of hypobaric hypoxia-induced skeletal muscle protein loss. High Alt Med Biol. 24:302-311, 2023. Background: Carnosine (CAR; ß-alanyl-L-histidine), a biologically active dipeptide is known for its unique pH-buffering capacity, metal chelating activity, and antioxidant and antiglycation property. ß-Alanine (ALA) is a nonessential amino acid and used to enhance performance and cognitive functions. Hypobaric hypoxia (HH)-induced muscle protein loss is regulated by multifaceted signaling pathways. The present study investigated the beneficial effects of CAR and ALA against HH-associated muscle loss. Methodology: Simulated HH exposure was performed in an animal decompression chamber. Gastric oral administration of CAR (50 mg·kg-1) and ALA (450 mg·kg-1) were given daily for 3 days and at the end of the treatment, hindlimb skeletal muscle tissue was excised for western blot and biochemical assays. Results: Cosupplementation of CAR and ALA alone was able to ameliorate the hypoxia-induced inflammation, oxidative stress (FOXO), ER stress (GRP-78), and atrophic signaling (MuRF-1) in the skeletal muscles. Creatinine phospho kinase activity and apoptosis were also decreased in CAR- and ALA-supplemented rats. However, CAR showed enhanced protection in HH-induced muscle loss as CAR supplementation was able to enhance protein concentration, body weight, and decreased the protein oxidation and ALA administration was not able to restore the same. Conclusions: Hence, the present comprehensive study supports the fact that CAR (50 mg·kg-1) is more beneficial as compared with ALA (450 mg·kg-1) in ameliorating the hypoxia-induced skeletal muscle loss.


Assuntos
Carnosina , Ratos , Animais , Carnosina/farmacologia , Carnosina/metabolismo , Músculo Esquelético/metabolismo , Suplementos Nutricionais , Proteínas Musculares/metabolismo , beta-Alanina/farmacologia , beta-Alanina/metabolismo , Hipóxia/tratamento farmacológico , Hipóxia/metabolismo
9.
Acta Physiol (Oxf) ; 239(1): e14020, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-37485756

RESUMO

AIM: Histidine-containing dipeptides (HCDs) are pleiotropic homeostatic molecules with potent antioxidative and carbonyl quenching properties linked to various inflammatory, metabolic, and neurological diseases, as well as exercise performance. However, the distribution and metabolism of HCDs across tissues and species are still unclear. METHODS: Using a sensitive UHPLC-MS/MS approach and an optimized quantification method, we performed a systematic and extensive profiling of HCDs in the mouse, rat, and human body (in n = 26, n = 25, and n = 19 tissues, respectively). RESULTS: Our data show that tissue HCD levels are uniquely produced by carnosine synthase (CARNS1), an enzyme that was preferentially expressed by fast-twitch skeletal muscle fibres and brain oligodendrocytes. Cardiac HCD levels are remarkably low compared to other excitable tissues. Carnosine is unstable in human plasma, but is preferentially transported within red blood cells in humans but not rodents. The low abundant carnosine analogue N-acetylcarnosine is the most stable plasma HCD, and is enriched in human skeletal muscles. Here, N-acetylcarnosine is continuously secreted into the circulation, which is further induced by acute exercise in a myokine-like fashion. CONCLUSION: Collectively, we provide a novel basis to unravel tissue-specific, paracrine, and endocrine roles of HCDs in human health and disease.


Assuntos
Carnosina , Dipeptídeos , Humanos , Ratos , Camundongos , Animais , Dipeptídeos/química , Dipeptídeos/metabolismo , Dipeptídeos/farmacologia , Carnosina/metabolismo , Carnosina/farmacologia , Histidina/química , Histidina/metabolismo , Espectrometria de Massas em Tandem , Antioxidantes
10.
FEMS Microbiol Lett ; 3702023 01 17.
Artigo em Inglês | MEDLINE | ID: mdl-37300868

RESUMO

Proton-dependent oligopeptide transporters (POTs) are recognized for their substrate promiscuity due to their ability to transport a wide range of substrates. POTs are conserved in all forms of life ranging from bacteria to humans. A dipeptide-fluorophore conjugate, H-(ß-Ala)-Lys(AMCA)-OH, is a well-known substrate of the transporter YdgR that is commonly used as a fluorescent reporter. In order to understand the substrate space of YdgR, we used this dipeptide as a bait reference, when screening an ensemble of compounds (previously tested in PEPT/PTR/NPF space) via a cheminformatic analysis based on the Tanimoto similarity index. Eight compounds (sinalbin, abscisic acid, carnosine, jasmonic acid, N-acetyl-aspartate, N-acetyl-lysine, aspartame, and N-acetyl-aspartylglutamate), covering a wide range on the Tanimoto scale, were tested for YdgR-mediated transport. Carnosine was the only compound observed to be a YdgR substrate based on cell-based transport assays and molecular docking. The other compounds tested were neither inhibitors nor substrates. Thus, we found that neither the Tanimoto similarity index nor ADME (absorption, distribution, metabolism, and excretion) properties appear useful for the identification of substrates (e.g., dipeptides) in YdgR-mediated drug transport.


Assuntos
Carnosina , Proteínas de Escherichia coli , Humanos , Prótons , Proteínas de Escherichia coli/metabolismo , Escherichia coli/metabolismo , Carnosina/metabolismo , Simulação de Acoplamento Molecular , Quimioinformática , Proteínas de Membrana Transportadoras/metabolismo , Transporte Biológico , Oligopeptídeos/metabolismo , Dipeptídeos/metabolismo
11.
Histochem Cell Biol ; 160(1): 63-77, 2023 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-37171629

RESUMO

It is generally accepted that carnosine (ß-alanyl-L-histidine) content is higher in glycolytic than in oxidative muscle fibres, but the underlying mechanisms responsible for this difference remain to be elucidated. A first study to better understand potential mechanisms involved was undertaken (1) to determine whether differences in the expression of carnosine-related enzymes (CARNS1, CNDP2) and transporters (SLC6A6, SLC15A3, SLC15A4, SLC36A1) exist between oxidative and glycolytic myofibres and (2) to study the effect of carnosine on myoblast proliferative growth and on carnosine-related gene expression in cultured myoblasts isolated from glycolytic and oxidative muscles. Immunohistochemistry analyses were conducted to determine the cellular localization of carnosine-related proteins. Laser-capture microdissection and qPCR analyses were performed to measure the expression of carnosine-related genes in different myofibres isolated from the longissimus dorsi muscle of ten crossbred pigs. Myogenic cells originating from glycolytic and oxidative muscles were cultured to assess the effect of carnosine (0, 10, 25 and 50 mM) on their proliferative growth and on carnosine-related gene expression. The mRNA abundance of CNDP2 and of the studied carnosine transporters was higher in oxidative than in glycolytic myofibres. Since carnosine synthase (CARNS1) mRNA abundance was not affected by either the fibre type or the addition of carnosine to myoblasts, its transcriptional regulation would not be the main process by which carnosine content differences are determined in oxidative and glycolytic muscles. The addition of carnosine to myoblasts leading to a dose-dependent increase in SLC15A3 transcripts, however, suggests a role for this transporter in carnosine uptake and/or efflux to maintain cellular homeostasis.


Assuntos
Carnosina , Suínos , Animais , Carnosina/análise , Carnosina/química , Carnosina/metabolismo , Músculo Esquelético/metabolismo , Fibras Musculares Esqueléticas/metabolismo , RNA Mensageiro/genética
12.
J Cachexia Sarcopenia Muscle ; 14(4): 1802-1814, 2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-37199284

RESUMO

BACKGROUND: Muscle wasting during cancer cachexia is mediated by protein degradation via autophagy and ubiquitin-linked proteolysis. These processes are sensitive to changes in intracellular pH ([pH]i ) and reactive oxygen species, which in skeletal muscle are partly regulated by histidyl dipeptides, such as carnosine. These dipeptides, synthesized by the enzyme carnosine synthase (CARNS), remove lipid peroxidation-derived aldehydes, and buffer [pH]i . Nevertheless, their role in muscle wasting has not been studied. METHODS: Histidyl dipeptides in the rectus abdominis (RA) muscle and red blood cells (RBCs) of male and female controls (n = 37), weight stable (WS: n = 35), and weight losing (WL; n = 30) upper gastrointestinal cancer (UGIC) patients, were profiled by LC-MS/MS. Expression of enzymes and amino acid transporters, involved in carnosine homeostasis, was measured by Western blotting and RT-PCR. Skeletal muscle myotubes were treated with Lewis lung carcinoma conditioned medium (LLC CM), and ß-alanine to study the effects of enhancing carnosine production on muscle wasting. RESULTS: Carnosine was the predominant dipeptide present in the RA muscle. In controls, carnosine levels were higher in men (7.87 ± 1.98 nmol/mg tissue) compared with women (4.73 ± 1.26 nmol/mg tissue; P = 0.002). In men, carnosine was significantly reduced in both the WS (5.92 ± 2.04 nmol/mg tissue, P = 0.009) and WL (6.15 ± 1.90 nmol/mg tissue; P = 0.030) UGIC patients, compared with controls. In women, carnosine was decreased in the WL UGIC (3.42 ± 1.33 nmol/mg tissue; P = 0.050), compared with WS UGIC patients (4.58 ± 1.57 nmol/mg tissue), and controls (P = 0.025). Carnosine was significantly reduced in the combined WL UGIC patients (5.12 ± 2.15 nmol/mg tissue) compared with controls (6.21 ± 2.24 nmol/mg tissue; P = 0.045). Carnosine was also significantly reduced in the RBCs of WL UGIC patients (0.32 ± 0.24 pmol/mg protein), compared with controls (0.49 ± 0.31 pmol/mg protein, P = 0.037) and WS UGIC patients (0.51 ± 0.40 pmol/mg protein, P = 0.042). Depletion of carnosine diminished the aldehyde-removing ability in the muscle of WL UGIC patients. Carnosine levels were positively associated with decreases in skeletal muscle index in the WL UGIC patients. CARNS expression was decreased in the muscle of WL UGIC patients and myotubes treated with LLC-CM. Treatment with ß-alanine, a carnosine precursor, enhanced endogenous carnosine production and decreased ubiquitin-linked protein degradation in LLC-CM treated myotubes. CONCLUSIONS: Depletion of carnosine could contribute to muscle wasting in cancer patients by lowering the aldehyde quenching abilities. Synthesis of carnosine by CARNS in myotubes is particularly affected by tumour derived factors and could contribute to carnosine depletion in WL UGIC patients. Increasing carnosine in skeletal muscle may be an effective therapeutic intervention to prevent muscle wasting in cancer patients.


Assuntos
Carcinoma Pulmonar de Lewis , Carnosina , Feminino , Humanos , Masculino , Aldeídos/metabolismo , beta-Alanina/metabolismo , beta-Alanina/farmacologia , Carnosina/metabolismo , Carnosina/farmacologia , Cromatografia Líquida , Dipeptídeos/metabolismo , Dipeptídeos/farmacologia , Músculo Esquelético/metabolismo , Atrofia Muscular/metabolismo , Espectrometria de Massas em Tandem , Ubiquitinas/metabolismo
13.
Sci Rep ; 13(1): 6484, 2023 04 20.
Artigo em Inglês | MEDLINE | ID: mdl-37081019

RESUMO

Balenine possesses some of carnosine's and anserine's functions, yet it appears more resistant to the hydrolysing CN1 enzyme. The aim of this study was to elucidate the stability of balenine in the systemic circulation and its bioavailability in humans following acute supplementation. Two experiments were conducted in which (in vitro) carnosine, anserine and balenine were added to plasma to compare degradation profiles and (in vivo) three increasing doses (1-4-10 mg/kg) of balenine were acutely administered to 6 human volunteers. Half-life of balenine (34.9 ± 14.6 min) was respectively 29.1 and 16.3 times longer than that of carnosine (1.20 ± 0.36 min, p = 0.0044) and anserine (2.14 ± 0.58 min, p = 0.0044). In vivo, 10 mg/kg of balenine elicited a peak plasma concentration (Cmax) of 28 µM, which was 4 and 18 times higher than with 4 (p = 0.0034) and 1 mg/kg (p = 0.0017), respectively. CN1 activity showed strong negative correlations with half-life (ρ = - 0.829; p = 0.0583), Cmax (r = - 0.938; p = 0.0372) and incremental area under the curve (r = - 0.825; p = 0.0433). Overall, balenine seems more resistant to CN1 hydrolysis resulting in better in vivo bioavailability, yet its degradation remains dependent on enzyme activity. Although a similar functionality as carnosine and anserine remains to be demonstrated, opportunities arise for balenine as nutraceutical or ergogenic aid.


Assuntos
Carnosina , Humanos , Carnosina/metabolismo , Anserina/metabolismo , Suplementos Nutricionais
14.
Molecules ; 28(8)2023 Apr 09.
Artigo em Inglês | MEDLINE | ID: mdl-37110558

RESUMO

Age-related macular degeneration (AMD) has been described as a progressive eye disease characterized by irreversible impairment of central vision, and unfortunately, an effective treatment is still not available. It is well-known that amyloid-beta (Aß) peptide is one of the major culprits in causing neurodegeneration in Alzheimer's disease (AD). The extracellular accumulation of this peptide has also been found in drusen which lies under the retinal pigment epithelium (RPE) and represents one of the early signs of AMD pathology. Aß aggregates, especially in the form of oligomers, are able to induce pro-oxidant (oxidative stress) and pro-inflammatory phenomena in RPE cells. ARPE-19 is a spontaneously arising human RPE cell line validated for drug discovery processes in AMD. In the present study, we employed ARPE-19 treated with Aß oligomers, representing an in vitro model of AMD. We used a combination of methods, including ATPlite, quantitative real-time PCR, immunocytochemistry, as well as a fluorescent probe for reactive oxygen species to investigate the molecular alterations induced by Aß oligomers. In particular, we found that Aß exposure decreased the cell viability of ARPE-19 cells which was paralleled by increased inflammation (increased expression of pro-inflammatory mediators) and oxidative stress (increased expression of NADPH oxidase and ROS production) along with the destruction of ZO-1 tight junction protein. Once the damage was clarified, we investigated the therapeutic potential of carnosine, an endogenous dipeptide that is known to be reduced in AMD patients. Our findings demonstrate that carnosine was able to counteract most of the molecular alterations induced by the challenge of ARPE-19 with Aß oligomers. These new findings obtained with ARPE-19 cells challenged with Aß1-42 oligomers, along with the well-demonstrated multimodal mechanism of action of carnosine both in vitro and in vivo, able to prevent and/or counteract the dysfunctions elicited by Aß oligomers, substantiate the neuroprotective potential of this dipeptide in the context of AMD pathology.


Assuntos
Carnosina , Degeneração Macular , Humanos , Carnosina/farmacologia , Carnosina/metabolismo , Retina/metabolismo , Peptídeos beta-Amiloides/metabolismo , Epitélio Pigmentado da Retina/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Estresse Oxidativo , Degeneração Macular/metabolismo , Dipeptídeos/farmacologia , Células Epiteliais/metabolismo , Pigmentos da Retina/metabolismo
15.
Nutrients ; 15(6)2023 Mar 19.
Artigo em Inglês | MEDLINE | ID: mdl-36986209

RESUMO

Carnosine is known to improve brain function. The molecular basis for the carnosine-mediated interaction between intestinal cells and neuronal cells is that carnosine acts on intestinal cells and stimulates exosome secretion, which can induce neurite outgrowth in neuronal cells. This study aimed to infer the carnosine-mediated interaction between muscle cells and neuronal cells. The results revealed that carnosine induces muscle cell differentiation, as well as the secretion of exosomes and myokines that can act on neuronal cells. Carnosine acts not only on intestinal cells but also on muscle cells, stimulating the secretion of secretory factors including exosomes that induce neurite outgrowth in neuronal cells, as well as myokines known to be involved in neuronal cell activation. As the miRNAs in exosomes secreted from intestinal cells and muscle cells upon carnosine treatment are different, it could be assumed that carnosine acts on each cell to interact with neuronal cell through separate factors and mechanisms.


Assuntos
Carnosina , MicroRNAs , Carnosina/farmacologia , Carnosina/metabolismo , Neurônios/metabolismo , Encéfalo/metabolismo , Músculos/metabolismo
16.
J Neurol Sci ; 447: 120608, 2023 04 15.
Artigo em Inglês | MEDLINE | ID: mdl-36906993

RESUMO

Carnosine (ß-alanyl-L-histidine) is a natural dipeptide with multiple neuroprotective properties. Previous studies have advertised that carnosine scavenges free radicals and displays anti-inflammatory activity. However, the underlying mechanism and the efficacies of its pleiotropic effect on prevention remained obscure. In this study, we aimed to investigate the anti-oxidative, anti-inflammative, and anti-pyroptotic effects of carnosine in the transient middle cerebral artery occlusion (tMCAO) mouse model. After a daily pre-treatment of saline or carnosine (1000 mg / kg / day) for 14 days, mice (n = 24) were subjected to tMCAO for 60 min and continuously treated with saline or carnosine for additional 1 and 5 days after reperfusion. The administration of carnosine significantly decreased infarct volume 5 days after the tMCAO (*p < 0.05) and effectively suppressed the expression of 4-HNE, 8-OHdG, Nitrotyrosine 5 days, and RAGE 5 days after tMCAO. Moreover, the expression of IL-1ß was also significantly suppressed 5 days after tMCAO. Our present findings demonstrated that carnosine effectively relieves oxidative stress caused by ischemic stroke and significantly attenuates neuroinflammatory responses related to IL-1ß, suggesting that carnosine can be a promising therapeutic strategy for ischemic stroke.


Assuntos
Carnosina , AVC Isquêmico , Fármacos Neuroprotetores , Acidente Vascular Cerebral , Camundongos , Animais , Carnosina/farmacologia , Carnosina/uso terapêutico , Carnosina/metabolismo , Fármacos Neuroprotetores/farmacologia , Fármacos Neuroprotetores/uso terapêutico , Acidente Vascular Cerebral/tratamento farmacológico , Estresse Oxidativo , Infarto da Artéria Cerebral Média/complicações , Infarto da Artéria Cerebral Média/tratamento farmacológico , Infarto da Artéria Cerebral Média/metabolismo , AVC Isquêmico/tratamento farmacológico
17.
Nano Lett ; 23(7): 2659-2668, 2023 04 12.
Artigo em Inglês | MEDLINE | ID: mdl-36940420

RESUMO

The targeting of tumor metabolism as a novel strategy for cancer therapy has attracted tremendous attention. Herein, we develop a dual metabolism inhibitor, Zn-carnosine metallodrug network nanoparticles (Zn-Car MNs), which exhibits good Cu-depletion and Cu-responsive drug release, causing potent inhibition of both OXPHOS and glycolysis. Notably, Zn-Car MNs can decrease the activity of cytochrome c oxidase and the content of NAD+, so as to reduce ATP production in cancer cells. Thereby, energy deprivation, together with the depolarized mitochondrial membrane potential and increased oxidative stress, results in apoptosis of cancer cells. In result, Zn-Car MNs exerted more efficient metabolism-targeted therapy than the classic copper chelator, tetrathiomolybdate (TM), in both breast cancer (sensitive to copper depletion) and colon cancer (less sensitive to copper depletion) models. The efficacy and therapy of Zn-Car MNs suggest the possibility to overcome the drug resistance caused by metabolic reprogramming in tumors and has potential clinical relevance.


Assuntos
Neoplasias da Mama , Carnosina , Humanos , Feminino , Carnosina/metabolismo , Carnosina/farmacologia , Cobre/farmacologia , Glicólise , Zinco
18.
Sci Rep ; 13(1): 4747, 2023 03 23.
Artigo em Inglês | MEDLINE | ID: mdl-36959331

RESUMO

This integrative study of transcriptomics and metabolomics aimed to improve our understanding of Wooden Breast myopathy (WB). Breast muscle samples from 8 WB affected and 8 unaffected male broiler chickens of 47 days of age were harvested for metabolite profiling. Among these 16 samples, 5 affected and 6 unaffected also underwent gene expression profiling. The Joint Pathway Analysis was applied on 119 metabolites and 3444 genes exhibiting differential abundance or expression between WB affected and unaffected chickens. Mitochondrial dysfunctions in WB was suggested by higher levels of monoacylglycerols and down-regulated genes involved in lipid production, fatty acid beta oxidation, and oxidative phosphorylation. Lower levels of carnosine and anserine, along with down-regulated carnosine synthase 1 suggested decreased carnosine synthesis and hence impaired antioxidant capacity in WB. Additionally, Weighted Gene Co-expression Network Analysis results indicated that abundance of inosine monophosphate, significantly lower in WB muscle, was correlated with mRNA expression levels of numerous genes related to focal adhesion, extracellular matrix and intercellular signaling, implying its function in connecting and possibly regulating multiple key biological pathways. Overall, this study showed not only the consistency between transcript and metabolite profiles, but also the potential in gaining further insights from analyzing multi-omics data.


Assuntos
Carnosina , Doenças Musculares , Doenças das Aves Domésticas , Animais , Masculino , Transcriptoma , Galinhas/genética , Galinhas/metabolismo , Músculos Peitorais/metabolismo , Carnosina/metabolismo , Perfilação da Expressão Gênica , Doenças Musculares/genética , Doenças Musculares/veterinária , Doenças Musculares/metabolismo , Metabolismo Energético/genética , Doenças das Aves Domésticas/genética , Doenças das Aves Domésticas/metabolismo
19.
Amino Acids ; 55(3): 413-420, 2023 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-36637533

RESUMO

Type-2 diabetes (T2D) is characterised by a dysregulation of metabolism, including skeletal muscle insulin resistance, mitochondrial dysfunction, and oxidative stress. Reactive species, such as methylglyoxal (MGO) and 4-hydroxynonenal (4-HNE), positively associate with T2D disease severity and can directly interfere with insulin signalling and glucose uptake in skeletal muscle by modifying cellular proteins. The multifunctional dipeptide carnosine, and its rate-limiting precursor ß-alanine, have recently been shown to improve glycaemic control in humans and rodents with diabetes. However, the precise mechanisms are unclear and research in human skeletal muscle is limited. Herein, we present novel findings in primary human T2D and lean healthy control (LHC) skeletal muscle cells. Cells were differentiated to myotubes, and treated with 10 mM carnosine, 10 mM ß-alanine, or control for 4-days. T2D cells had reduced ATP-linked and maximal respiration compared with LHC cells (p = 0.016 and p = 0.005). Treatment with 10 mM carnosine significantly increased insulin-stimulated glucose uptake in T2D cells (p = 0.047); with no effect in LHC cells. Insulin-stimulation increased MGO-modified proteins in T2D cells by 47%; treatment with carnosine attenuated this increase to 9.7% (p = 0.011). There was no effect treatment on cell viability or expression of other proteins. These findings suggest that the beneficial effects of carnosine on glycaemic control may be explained by its scavenging actions in human skeletal muscle.


Assuntos
Carnosina , Diabetes Mellitus Tipo 2 , Resistência à Insulina , Humanos , Insulina/metabolismo , Carnosina/farmacologia , Carnosina/metabolismo , Aldeído Pirúvico/farmacologia , Aldeído Pirúvico/metabolismo , Óxido de Magnésio/metabolismo , Fibras Musculares Esqueléticas/metabolismo , Músculo Esquelético/metabolismo , Diabetes Mellitus Tipo 2/metabolismo , Glucose/metabolismo , beta-Alanina/metabolismo
20.
Proteins ; 91(6): 822-830, 2023 06.
Artigo em Inglês | MEDLINE | ID: mdl-36637795

RESUMO

Human carnosinases (CNs) are dimeric dipeptidases in the metallopeptidase M20 family. Two isoforms of carnosinases (Zn2+ -containing carnosinase 1 (CN1) found in serum and Mn2+ -carnosinase 2 (CN2) in tissue) were identified. Both CNs cleave histidine-containing (Xaa-His) dipeptides such as carnosine where CN2 was found to accept a broader spectrum of substrates. A loss of CN function, resulting in a high carnosine concentration, reduces risk for diabetes and neurological disorders. Although several studies on CN activities and its Michaelis complex were conducted, all shed the light on CN1 activity where the CN2 data is limited. Also, the molecular details on CN1 and CN2 similarity and dissimilarity in structure and function remain unclear. Thus, in this work, molecular dynamics (MD) simulations were employed to study structure and dynamics of human CN1 and CN2 in comparison. The results show that the different catalytic ability of both CNs is due to their pocket size and environment. CN2 can accept a wider range of substrate due to the wider mouth of a binding pocket. The L1 loop seems to play a role in gating activity. Comparing to CN2, CN1 provides more electronegative entrance, more wettability, and higher stability of catalytic metal ion-pair in the active site which allow more efficient water-mediated catalysis. The microscopic understanding obtained here can serve as a basis for CN inhibition strategies resulting in higher carnosine levels and consequently mitigating complications associated with diseases such as diabetes and neurological disorder.


Assuntos
Carnosina , Dipeptidases , Humanos , Carnosina/química , Carnosina/metabolismo , Dipeptidases/genética , Dipeptídeos/química , Simulação de Dinâmica Molecular
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...